Global existence of smooth solutions to two-dimensional compressible isentropic Euler equations for Chaplygin gases
نویسنده
چکیده
In this paper we investigate the two-dimensional compressible isentropic Euler equations for Chaplygin gases. Under the assumption that the initial data is close to a constant state and the vorticity of the initial velocity vanishes, we prove the global existence of the smooth solution to the Cauchy problem for two-dimensional flow of Chaplygin gases.
منابع مشابه
Finite Propagation Speed and Finite Time Blowup of the Euler Equations for Generalized Chaplygin Gas
The blowup phenomenon for the N-dimensional isentropic compressible Euler equations for generalized chaplygin gas (GCG), which arises in a cosmology model related to dark matter and dark energy, is investigated. First, we establish the finite propagation speed property for the system. This allows one to apply the integration method to study the blowup problem. More precisely, by deriving a diff...
متن کاملGlobal existence and asymptotic behavior of the solutions to the 3D bipolar non-isentropic Euler–Poisson equation∗
Abstract. In this paper, the global existence of smooth solutions for the three-dimensional (3D) non-isentropic bipolar hydrodynamic model is showed when the initial data are close to a constant state. This system takes the form of non-isentropic Euler–Poisson with electric field and frictional damping added to the momentum equations. Moreover, the L-decay rate of the solutions is also obtained...
متن کاملThe Cauchy Problem on the Compressible Two-fluids Euler-Maxwell Equations
In this paper, we are concerned with the Cauchy problem on the compressible isentropic two-fluids Euler-Maxwell equations in three dimensions. The global existence of solutions near constant steady states with the vanishing electromagnetic field is established, and also the time-decay rates of perturbed solutions in L space for 2 ≤ q ≤ ∞ are obtained. The proof for existence is due to the class...
متن کاملAdmissibility of weak solutions for the compressible Euler equations, n ≥ 2.
This paper compares three popular notions of admissibility for weak solutions of the compressible isentropic Euler equations of gas dynamics: (i) the viscosity criterion, (ii) the entropy inequality (the thermodynamically admissible isentropic solutions), and (iii) the viscosity-capillarity criterion. An exact summation of the Chapman-Enskog expansion for Grad's moment system suggests that it i...
متن کاملVanishing Viscosity Limit of the Navier-Stokes Equations to the Euler Equations for Compressible Fluid Flow
We establish the vanishing viscosity limit of the Navier-Stokes equations to the isentropic Euler equations for one-dimensional compressible fluid flow. For the NavierStokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup-norm of solutions with respect to the physical viscosity coefficient may not be directly co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009